
Y-Innovate Build System for z/OS

Bobby Tjassens Keiser

12 April 2017



Agenda

 Introduction

 What is LWZMAKE?

– Introduction

– Why show it at REXXLA Symposium?

– Detailed example explained

 Demo's

– Deployment automation

– Build automation

 Q&A



Introduction

 Bobby Tjassens Keiser
38 yrs, married, 3 kids
Co-founder of Y-Innovate IT, an ISV and IBM business partner
Employee with ICU IT Services
Z-enthusiast

 Y-Innovate IT
Creator of Light Weight Web framework for CICS (LWW), a 
product to support web development with CICS on z/OS.
Recent side project: LWZMAKE



What is LWZMAKE?
Introduction

 New build automation tool, loosely based on make (well known 
in the *nix world)

 Specific for Z System platform, emphasis on traditional 'MVS' 
environment (PDS(E)'s, members, sequential data sets, that sort 
of thing)

 Open source! Get it at:
https://github.com/Y-Innovate/LWZMAKE

 Combination of a single Assembler source, which results in a 
single load module, and a set of sample JCL's to run it and 
sample REXX EXECs to perform build functions.

https://github.com/Y-Innovate/LWZMAKE


What is LWZMAKE?
More introduction

 Just like make does, LWZMAKE can 'update files from others 
whenever the others change'.
e.g. only copy members from source PDS's to target PDS's when 
the source PDS's were altered more recently.

 Also just like with make, the way to tell the utility what to do 
is with a script in LWZMAKE's script language. Such a script is 
often called a makefile (again loosely based on make's 
script syntax).



What is LWZMAKE?
Why show it at the REXXLA Symposium?

 Unlike make, instead of firing off command lines for 
performing build activities, you call REXX EXECs to do those 
things.

 For example in the following makefile, the CALL statement at 
the bottom invokes a REXX EXEC called IEBCOPY, which in turn 
invokes the IEBCOPY utility.



What is LWZMAKE?
Why show it at the REXXLA Symposium? (continued)

 The reason to show it at the REXXLA Symposium is because of 
the tight relation to REXX (so I'm hoping you'll find it 
interesting). LWZMAKE determines which files require a build 
and invokes one or more REXX EXECs to perform the actual 
build tasks. Those REXX EXECs can focus on a single file instead 
of listing PDS members etc.

 Also I'm hoping to get feedback (what I really want is for you to 
download it, use it, tell me what could be improved or added, 
contribute your own REXX's etc).



What is LWZMAKE?
Explaining the example

 Going back to the example:

These are
variable

assignments

This is
a 'rule'

This is
another

'rule'

This is a
'recipe'

Comments
start with #

Line continuation
with \



What is LWZMAKE?
Explaining the example

 Going back to the example:

Assignment of special
variable to tell that
recipes start with -

Direct assignment :=
means variables are
resolved immediately

Variables used by
enclosing in $(...)



What is LWZMAKE?
Explaining the example

 Going back to the example:

Rules consist of
one or more targets

left of the :

...and one ore more
prerequisites
right of the :

PHONY targets don't
represent real files,
but are used to get
prerequisites built

Special variables
$@ and $% mean
“current target” and

“current target's
PDS member”



What is LWZMAKE?
Explaining the example

 Going back to the example:

Recipes can contain
variable assignment

and CALL statements

CALL invokes a REXX
EXEC named by the 1st

parameter

Anything beyond
that 1st parameter
is passed to the
REXX EXEC as

an argument



What is LWZMAKE?
2 phases of execution

 LWZMAKE processes a makefile in 2 phases

 During the first phase

– the makefile is parsed and
committed to memory.

– Variables are assigned their values.

– Variables are resolved when
● referred to in direct assignments :=
● or in targets (left of the : in rules)

– Variables referred to in prerequisites
or in recipes are left unresolved.



What is LWZMAKE?
2 phases of execution

 So for our example, after the first phase:
– These variables are in memory:

– These targets are in memory:



What is LWZMAKE?
2 phases of execution

 During the second phase

– the requested (or first found) target
is processed by

● resolving any variables in its prerequisites
● looking up every prerequisite to see if

there are targets defined for them
● if so, recursively process those targets first
● when any of the prerequisites are altered

at a later date+time than the target, that
target requires a build

● so then the variables in the accompanying
recipe are resolved

● and the recipe is executed



What is LWZMAKE?
2 phases of execution

 So for our example, the second phase results in:
– The first target ALL is processed:



What is LWZMAKE?
2 phases of execution

 So for our example, the second phase results in:
– Variables in its prerequisites are resolved:



What is LWZMAKE?
2 phases of execution

 So for our example, the second phase results in:
– The first prerequisite MYUSR.PDS.JCL(MEM1) is looked up and found as a 

target:



What is LWZMAKE?
2 phases of execution

 So for our example, the second phase results in:
– Variables in its prerequisites are resolved:



What is LWZMAKE?
2 phases of execution

 So for our example, the second phase results in:
– The prereq is looked up, not found as a target, assumed an existing file. If prereq 

updated more recently than target, then the variables in the recipe are resolved:



What is LWZMAKE?
2 phases of execution

 So for our example, the second phase results in:
– Then the recipe is executed, in this case invoking IEBCOPY to copy 

member MEM1 from SOMEUSR.PDS.JCL to MYUSR.PDS.JCL:



What is LWZMAKE?
2 phases of execution

 So for our example, the second phase results in:
– The processing of ALL's first prerequisite is finished, now follows the 

same processing for the second, possibly resulting in MEM2 begin copied:



Agenda

 Introduction

 What is LWZMAKE?

– Introduction

– Why show it at REXXLA Symposium?

– Detailed example explained

 Demo'sDemo's

– Deployment automationDeployment automation

– Build automationBuild automation

 Q&A



Q & A

?


	Slide 1
	Y-INNOVATE IT
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

